МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ КАЗАХСТАН

КОМИТЕТ НАУКИ

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ЖЕНСКИЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

«СИНТЕЗ, СТРОЕНИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА НОВЫХ ЭФФЕКТИВНЫХ ОТЕЧЕСТВЕННЫХ ПРЕПАРАТОВ В КАЧЕСТВЕ РЕГУЛЯТОРОВ РОСТА И РАЗВИТИЯ РАСТЕНИЙ» AP19678514 (промочиточный)

(промежуточный)

Руководитель темы, к.х.н., доцент

Н.О. Акимбаева

Алматы, 2024

Задача №2. Установление структуры и биологической активности новых препаратов в лабораторных условиях

2.1. Спектральный анализ полученных соединений методами элементного анализа, тонкослойной хроматографии, ИК-, ЯМР ¹Н, ¹³С, ³¹Р-спектроскопии и рентгеноструктурного анализа

Исходные соединения (1-3) для синтеза дитиокарбаматов (4-9), были получены с хорошими выходами 73-96 % аминометилированием фенилацетилена в условиях реакции Манниха с различными аминами (*n*-бутиламин, анилин, бензиламин) в среде сухого диоксана при температуре 45-50 °C, в присутствии катализатора FeCl₃+Cu(CH₃COO)₂, (Pucyнok 1).

Рисунок 1 – Аминометилирование фенилацетилена 1-3

Ход реакции контролировали при помощи метода тонкослойной хроматографии («Silufol» UV-254, элюент – бензол). Состав и строение полученных соединений (1-3) подтверждены данными элементного анализа. Физико-химические характеристики синтезированных соединений (1-3) представлены в табл.1.

Взаимодействием полученных различных ацетиленовых аминов (1-3), полученных аминометилированием фенилацетилена в условиях реакции Манниха с различными аминами (*n*-бутиламин, анилин, бензиламин) с сероуглеродом в присутствии КОН (NaOH) в спирте при комнатной температуре синтезированы соответствующие дитиокарбаматы (4-9) в виде бледно желтых кристаллов с выходами 52-70 % (Рисунок 2).

4-6 R' = K; 7-9 R' = Na 4,7 R = $n-C_4H_0-$; 5,8 R = Ph-; 6,9 R = Ph-CH $_2-$

Рисунок 2 - Синтез дитиокарбаматов 4-9

Ход реакции контролировали при помощи метода тонкослойной хроматографии («Silufol» UV-254, элюент – бензол). Состав и индивидуальность синтезированных ацетиленовых аминов (1-3), дитиокарбаматов (4-9) подтверждены данными физико-

химических методов, включая физические константы и данные ИК спектроскопии, а также ЯМР ¹Н и ¹³С (Таблицы 1-3).

N⁰	Выход,	R _f	Т _{пл.} °С	I	Вычислено,	, %	Брутто
соед.	%			С	<u>Паидено,</u> Н	N	формула
1	74	0,67	масло	83,42	9,09	7,48	C ₁₃ H ₁₇ N
				82,56	10,02	7,42	
2	73	0,84	масло	<u>86,95</u>	<u>6,28</u>	<u>6,76</u>	$C_{15}H_{13}N$
				85,90	7,16	6,94	
3	96	0,42	масло	<u>86,87</u>	<u>6,78</u>	<u>6,33</u>	$C_{16}H_{15}N$
				85,69	7,57	6,74	
4	68	0,03	200-203	<u>55,81</u>	<u>5,31</u>	4,65	$C_{14}H_{16}NKS_2$
				55,13	5,46	4,18	
5	56	0,12	193-196	<u>59,81</u>	<u>3,73</u>	<u>4,36</u>	$C_{16}H_{12}NKS_2$
				58,32	3,15	4,28	
6	58	0,09	199-200	<u>60,89</u>	<u>4,17</u>	<u>4,17</u>	$C_{17}H_{14}NKS_2$
				61,01	4,98	3,76	
7	71	0,04	68-70	<u>58,94</u>	<u>5,61</u>	<u>4,91</u>	$C_{14}H_{16}NNaS_2$
				60,17	4,93	5,25	
8	52	0,10	92-93	<u>62,95</u>	<u>3,93</u>	<u>4,59</u>	$C_{16}H_{12}NNaS_2$
				63,56	2,83	5,12	
9	70	0,14	81-82	<u>63,94</u>	4,38	<u>4,38</u>	$C_{17}H_{14}NNaS_2$
				62,36	3,35	4,00	

Таблица 1 – Физико-химические ха	рактеристики синтезированных соединений (1	1-9)
1		- /

В ИК спектрах соединений (1-3) имеются полосы поглощения валентных колебаний в области 2250 см⁻¹, 2300 см⁻¹, 2300 см⁻¹, что соответствует валентным колебаниям тройной (C=C) связи, наблюдаются также полосы поглощения в области 3058 см⁻¹, 3082 см⁻¹, 2955 см⁻¹ характерные для NH групп. Соединения имеют характерные полосы поглощения фенильной группы в области (C=C) 3032 см⁻¹, (C=C) 3028-3060 см⁻¹, (C=C) 3029-3060 см⁻¹, (C-H) и в области 1451-1490 см⁻¹, (C-H) 1518-1598 см⁻¹, (C-H) 1442-1490 см⁻¹.

В инфракрасных спектрах полученных дитиокарбаматов (4-9) наблюдаются полосы поглощения средней интенсивности в области ~1110 и слабые полосы при ~860 см⁻¹ характерные для тиоамидных N–C=S и C–S групп, соответственно. Также наблюдаются интенсивные полосы поглощения при ~2800-2900 см⁻¹, характерные для валентных колебаний С-H связей предельных углеводородов и отсутствие полос поглощения, соответствующие колебаниям NH-групп.

N⁰	ИК - спектр, v, см ⁻¹							
соед.	Ph	C≡C	(CH ₃) CH ₂	NH	C=S	C-S		
1	(C=C) 3032 (C-H) 1518-1598	2250	2952-2814	3058	-	-		
2	(C=C) 3028-3060 (C-H) 1451-1490	2300	2808	3082	-	-		
3	(C=C) 3029-3060 (C-H) 1442-1490	2300	2811-2886	2955	-	-		

Таблица 2 – Данные ИК спектров полученных соединений (1-9)

продолжение таблицы 2

4	(C=C) 3363 (C-H) 1440	2250	2991-2919	-	1109	862
5	(C=C) 3348 (C-H) 1440	2300	2924	-	1110	837
6	(C=C) 3349 (C-H) 1440	2100	2975	-	1103	993
7	(C=C) 3363 (C-H) 1440	2250	2991-2919	-	1109	862
8	(C=C) 3348 (C-H) 1438	2300	2924	-	1110	837
9	(C=C) 3349 (C-H) 1440	2100	2975	-	1103	993

В протонном спектре (ПМР) синтезированных ацетиленовых аминов и дитиокарбаматов (1-9) сигналы протонов метильной и метиленовых групп фенильного радикала наблюдаются в области 6,54-7,50 м.д., (-CH₃) - 9,90-0,98 м.д. (-CH₂-)_n 1,20-4,52 м.д., и (-CH₂N-) 3,41-4,79 м.д. В соединениях (4-9) исчезает полоса поглощения валентных колебаний NH-групп в области 1,39-4,11 м.д., присутствующая в ацетиленовых аминах 1-3, (таблица 3).

Таблица №3 – Данные спектров Я	ЯМР ¹ Н и ¹³ С синтезированных соединен	ий 1-9
--------------------------------	---	--------

	ЯМР ¹ Н - спектр, v, см ⁻¹ , (СНСІ ₃)				ЯМР ¹³ С - спектр, v, см ⁻¹ , (СНСІ ₃)				
№	Ph	CH ₂ N	NH	-CH ₂ (CH ₃)	Ph	C≡C	CH ₂ N (N-CH ₂)	C=S	- CH ₂ (CH ₃)
1	7,15- 7,39	3,41	1,39	1,20; 1,65; 2,78;(0,90)	123,81- 131,80	84,17 85,09	40,38 (49,13)	-	20,42; 32,58 (13,94)
2	6,60- 7,39	3,94	4,11	-	114,36- 147,31	85,94 86,43	33,76	-	-
3	6,54- 7,25	3,14	3,36	2,37	122,66- 149,17	81,46 86,33	44,24	-	23,39
4	7,15- 7,44	4,25	-	1,45; 1,50; 3,55; (0,98)	124,65- 132,35	84,60 91.07	45,10 (53,18)	184,20	20,12; 28,90; (13,65)
5	6,71- 7,41	4,79	-	-	125,22- 146,52	86,36 92,41	44,34	179,20	-
6	6,90- 7,50	4,38	-	4,52	124,51- 136,96	84,60 91,26	45,91	185,78	53,15
7	7,16- 7,42	4,25	-	1,45; 1,50; 3,55; (0,98)	124,65- 132,35	84,60 91,07	45,10 (53,18)	184,20	20,12; 28,90; (13,65)
8	6,71- 7,41	4,79	-	-	125,22- 146,52	86,36 92,41	44,34	179,20	-
9	6,90- 7,50	4,38	-	4,52	124,51- 136,96	84,60 91,26	45,91	185,78	53,15

Как видно в таблице 3, в углеродном спектре (ЯМР ¹³С) синтезированных дитиокарбаматов (4-9) наблюдается появление слабопольных сигналов (179,20-184,20

м.д.), относящихся к группе >C=S, что отсутствуют в спектрах (ЯМР 13 C) ацетиленовых аминов (1-3).

Совпадение экспериментально найденных значений химических сдвигов углеродных атомов в спектрах ЯМР ¹³С с соответствующими величинами, полученными с помощью расчета по программе «ChemDraw Professional», как показано на рисунке 2.5, подтверждает правильность отнесения химических сдвигов соответствующим углеродным атомам. Следует подчеркнуть, что самый слабопольный сигнал, относящийся к группе >C=S, проявляется в области 170м.д., что характерно именно для дитиоамидного углерода, а не в области 193м.д., что было бы характерно для дитиокарбонатной группы, как показано в спектре ЯМР ¹³С для N-(3-фенилпроп-2-ин-1-ил)-N-фениламинодитиокарбамата калия (5), рассчитанного по программе «ChemDraw Professional», как показано на рисунке 3.

Рисунок 3 – N-(3-фенилпроп-2-ин-1-ил)-N-фениламинодитиокарбамата калия (5)

Двумерный спектр COSY, показанный на рисунке 4, позволил установить гомоядерные взаимодействия Н-Н через три связи и однозначно подтвердить структуру полученного соединения (1).

Рисунок 4 – Двумерный спектр COSY N-(3-фенилпроп-2-ин-1-ил)-N-бутиламина (1)

Сканирующий электронный микроскоп (СЭМ) предназначен для получения увеличенного изображения объекта путем сканирования объекта направленным на него электронным лучом и регистрации сигнала, генерируемого при взаимодействии электронов с детектором. Малый диаметр зонда даже при малых ускоряющих напряжениях и больших токах позволяет проводить элементный анализ образцов с размерами анализируемой области в несколько десятков нанометров. Детектор тока пучка расположен на колонне

микроскопа под апертурой объектива, так что ток пучка можно контролировать в любой момент анализа.

С целью изучения морфологии поверхностного слоя новых образцов сложного смешанного феррита, синтезированных золь-гель методом, было проведено исследование с помощью сканирующего электронного микроскопа с электродифракционным изображением, освещающим микроструктуры. Электронные монографии натриевых и калиевых солей дитиокарбаматов, полученных на визуализирующем электронном микроскопе (Hitachi TM4000 Plus, APPLICATION Note team, Brooker, Germany), представлены на рисунках 5-6.

Рисунок 5 – Дитиокарбаматы натрия

Рисунок 6 – Дитиокарбаматы калия

Исследование и разработка методов синтеза новых амидофосфатов на основе 1этинил1-аминоциклогексана, в условиях реакции Тодда-Аттертона с использованием микроволнового облучения.

Разработаны препаративно-оптимальные условия фосфорилирования диалкилфосфористых кислот в условиях микроволновой активации (Рисунок 7). В качестве исходных диалкилфосфитов были выбраны диметил, диэтил, дипропил, дибутил и ди (β-хлорэтил) фосфиты.

10 R = CH₃; 11 R = C₂H₅; 12 R = C₃H₇; 13 R = C₄H₉; 14 R = CH₂CH₂Cl Рисунок 7 – Фосфорилирование 1-этинил-1-аминоциклогексана (10-14)

Полученные амидофосфаты (10-14) представляют собой белые кристаллические вещества, легко очищающиеся перекристаллизацией из петролейного эфира.

Индивидуальность синтезированных соединений контролировали методом тонкослойной хроматографии (TCX) на пластинках СОРБФИЛ ПТСХ-АФ-А-УФ. Состав и строение полученных соединений подтверждены данными элементного анализа. Физикохимические характеристики соединений (10-14) представлены в таблице 4.

N⁰	Выход,	Т _{пл.,} ⁰ С	R _f		Вычис	6/	Брутто	
соед.	%				Найд		формула	
				С	Η	Ν	Р	
10	92	111-112	0,64	51,95	7,79	6,06	13,42	$C_{10}H_{18}NO_3P$
				52,23	7,53	5,86	13,54	
11	91	50-51	0,69	55,59	8,49	5,40	11,96	$C_{12}H_{22}NO_3P$
				55,23	8,53	5,66	11,54	
12	89	12-13	0,65	<u>58,54</u>	9,06	4,87	10,80	$C_{14}H_{26}NO_3P$
		170-171.2		58,40	9,00	4,80	10,40	
		MM						
		1.4704						
13	93	15.5-16.5	0,68	<u>60,95</u>	<u>9,52</u>	<u>4,44</u>	<u>9,84</u>	$C_{16}H_{30}NO_3P$
				60,91	9,82	4,40	9,52	
14	97	39-40	0,70	43,90	6,10	4,27	<u>9,45</u>	$C_{12}H_{20}NO_3PCl_2$
				43,87	6,59	4,59	9,75	

Таблица 4 – Физико-химические характеристики диалкил-N-(1-этинил-цикло-гексан-1-ил)амидофосфатов (10-14)

В ИК спектрах амидофосфатов (10-14) имеются полосы поглощения в области 1235-1208 см⁻¹ характерные для Р=О группы, в интервале 1080-1000 см⁻¹ наблюдаются интенсивные дублетные полосы поглощения Р–О–С – связи. Вторичной аминогруппе соответствуют полосы поглощения в области 3200-3178 см⁻¹ соответственно. В области 2115-2100 см⁻¹ наблюдаются валентные колебания, характерные для тройной связи (-C≡C). Валентным колебаниям концевого ацетиленового водорода (≡CH) соответствуют полосы поглощения в области 3310 - 3227 см⁻¹, соответственно (Таблица 5).

В спектрах ЯМР ¹Н соединений (10-14) сигналы протона амидной группы проявляются в виде дублета в области 2.93–3.32 м.д. с константой спин-спинового расщепления J_{NH-P} 7.2 Гц, сигнал этинильного протона проявляется в виде синглета при 2.28–2.41 м.д. (табл.1). Сигналы протонов диалкоксифосфорильных групп для (10) проявляются в виде дуплета в области 3.74 м.д. (д, J=11.3 Гц, 6H); для (11) – в виде мультиплета 4.15-4.08 м.д. (м, 4H) и в виде триплета в области 1.34 м.д. (т, 6H, J=7.1 Гц,); для (12) – в области 3.91 м.д. (м, 4H); для (13) – в области 3.95 м.д. (кв, 4H); для (14) –

триплет в области 3.65 (т, J=5.1 Гц, 8Н), Сигналы протонов циклогексильного фрагмента для соединений (10-14) резонируют в виде мультиплетов в области 1.33-1.66 м.д. (м, 10Н).

В спектрах ЯМР ¹³С сигналы углеродов циклогексильного фрагмента и диалкоксифосфорильных групп соединений (10,11,14) приведены в таблице 5.

В спектрах ЯМР ³¹Р продуктов реакции (10-14) имеются синглетные сигналы в области 5.90–8.55 м.д., что соответствует резонансу ядра фосфора в диалкиламидофосфатах.

Таблица 5 – Данные ИК-, ЯМР ¹H, ¹³C, ³¹Р диалкил-N-(1-этинилциклогексан-1-ил)амидофосфатов (10-14)

No											
		ИК-о	спектр,	см ⁻¹			ЯМР	¹ Н - спе	ктр, δ, м.	д.,	³¹ P,
	NH	≡CH	C≡C	P=O	P-O-	-C			-		δ,
											м.д.
10	3178	3259	2100	1222	103	1 3.1	74 д (J = 1	11.3 Гц,	6H, OCH	H ₃), 3.17	8.55
						Д	$(J_{\text{NH-P}} =$	7.7 Гц,	1H, NH)), 2.41 c	
						(1)	H, C≡C),	2.00д (.	J = 10.7	Γц, 2Н),	
						1.0	57 – 1.53 1	м (7Н), 1	.22 - 1.1	3м(1Н)	
11	3174	3227	2104	1208	1208 1029		12 м (4Н,	PO <u>CH</u> ₂ C	CH ₃), 2.93	3д(Ј _{NH-}	8.00
						Р	$P = 7.2 \Gamma \mu, 1H), 2.40 c (1H, C=C),$				
						2.02 д (2H, J = 5.9 Гц), 1.62 дд (цд (7H, J		
						=2	20.8, 9.3 I	`ц), 1.34	т (6Н, <i>J</i> =	= 7.1 Гц,	
						PC	DCH ₂ CH ₃)			
12	3200	3305	2115	1230	102	0, 3.9	91 м (4Н), 3.32 J	ц (J _{NH-P} =	=7.2 Гц,	5.98
					100	0 1E	1H), 2.31 c (1H, C=C)				
13	3200	3310	2115	1235	107	0, 3.9	95 кв (4Н), 3.20 д	$(\mathbf{J}_{\mathbf{NH}-\mathbf{P}} = 8$	8 Гц, 1Н,	5.90
					103	5 NI	H), 2.28 c	(1H, ≡C	H)		
14	3148	3286	2112	1228	108	0, 4.	19 c (4H,	POCH ₂	<u>CH</u> ₂), 3.8	2д(2Н,	6.50
					102	4 J =	= 8.0 Гц,)), 3.65 т	(4H, <i>J</i> =	= 5.1 Гц,	
						PC	DCH ₂ CH ₂), 2.38 c ((1H, C≡C	C), 1.94 c	
						(1)	H), 1.54 c	(7H)			
		I		ЯMI	$P^{13}C -$	- спект	<u>р, δ, м.д.</u>	,	I	I	
	C_1	C _{2,6}	C _{3,4}	5 (C ₄	C_7	C ₈	C9	C ₁₀	C ₁₁	C ₁₂
10	52.00	39.86	23.3	1 25	.46	87.10	72.37	53.43	53.49	-	-
11	51.93	39.80	23.2	25 24	.21	87.44	73.48	62.59	17.17	62.59	18.42
14	52.29	39.87	23.2	.9 25	.44	87.08	72.76	66.46	43.12	66.41	43.20

Диметил-N-(1-этинилциклогексан-1-ил)амидофосфат (10): ИК спектр v, см⁻¹: 3178, 3259, 2100, 1222, 1031. Спектр ЯМР ¹H (CHCl₃-*d*) δ , м.д. 3.74 д (6H, OCH₃, *J* = 11.3 Гц), 3.17 д (1H, *J*_{NH-P}= 7.7 Гц), 2.41 с (1H, C=C), 2.00 д (2H, *J* = 10.7 Гц), 1.67 – 1.53 м (7H), 1.22 – 1.13 м (1H). Спектр ЯМР ¹³С (CHCl₃-*d*) $\delta_{\rm C}$, м.д. 87.10, 72.37, 53.43, 52.00, 39.86, 25.46, 23.31. Спектр ЯМР ³¹P (CHCl₃-*d*) $\delta_{\rm P}$ 8.55 м.д. Вычислено, %: С 51.95; H 7.79; N 6.06; Р 13.42. С₁₀H₁₈NO₃P. Найдено, %: С 52.23; H 7.53; N 5.86; P 13.54.

Диэтил-N-(1-этинилциклогексан-1-ил) амидофосфат (11): ИК спектр v, см⁻¹: 3174, 3227, 2104, 1208, 1029. Спектр ЯМР ¹H (CHCl₃-*d*) δ , м.д. 4.12 м (4H, PO<u>CH₂</u>CH₃), 2.93 д (J_{NH-P} = 7.2 Гц, 1H), 2.40 с (1H, C=C), 2.02 д (2H, J = 5.9 Гц), 1.62 дд (7H, J = 20.8, 9.3 Гц), 1.34 т (6H, *J* = 7.1 Гц, POCH₂<u>CH₃</u>). Спектр ЯМР ¹³С (CHCl₃-*d*) $\delta_{\rm C}$, м.д. 87.44, 73.48, 62.59, 51.93, 39.80, 24.21, 23.25, 18.42, 17.17. Спектр ЯМР ³¹P (CHCl₃-*d*) $\delta_{\rm P}$ 8.00 м.д. Вычислено, %: C 55.59; H 8.49; N 5.40; P 11.96. C₁₂H₂₂NO₃P. Найдено, %: C 55.23; H 8.53; N 5.66; P 11.54.

*О,О-дипропил-N-(1-этинилциклогексан-1-ил)амидофосфат (*12*):* ИК спектр v, см⁻ ¹: 3200, 3305, 2115, 1230, 1020, 1000. Спектр ЯМР ¹Н (СНСІ₃-*d*) δ, м.д. 3.91 м (4Н), 3.32 д (J_{NH-P} =7.2 Гц, 1Н), 2.31 с (1Н, С≡С). Спектр ЯМР ³¹Р (СНСІ₃-*d*) δ_P 5.98 м.д. Вычислено, %: С 58.53; Н 9.06; N 4.87; Р 10.80. С₁₄Н₂₆NO₃Р. Найдено, %: С 58.40; Н 9.00; N 4.80; Р 10.40.

*О,О-дибутил-N-(1-этинилциклогексан-1-ил)амидофосфат (*13*):* ИК спектр v, см⁻¹: 3200, 3310, 2115, 1235, 1070, 1035. Спектр ЯМР ¹Н (CHCl₃-*d*) δ, м.д. 3.95 кв (4H), 3.20 д (J_{NH-P} = 8 Гц, 1H, NH), 2.28 с (1H, ≡CH). Спектр ЯМР ³¹Р (CHCl₃-*d*) δ_P 5.90 м.д. Вычислено, %: С 60.95; Н 9.52; N 4.44; P 9.84. С₁₆Н₃₀NO₃P. Найдено, %: С 60.91; Н 9.72; N 4.40; P 9.67.

 $Дu(\beta$ -хлорэтил)-N-(1-этинилциклогексан-1-ил)амидофосфат (14): ИК спектр v, см⁻¹: 3148, 3286, 2112, 1228, 1080, 1024. Спектр ЯМР ¹Н (CHCl₃-*d*) δ , м.д. 4.19 с (4H, POCH₂<u>CH₂</u>), 3.82 д (2H, *J* = 8.0 Гц,), 3.65 т (4H, *J* = 5.1 Гц, PO<u>CH₂</u>CH₂), 2.38 с (1H, C=C), 1.94 с (1H, NH), 1.54 с (7H). Спектр ЯМР ¹³С (CHCl₃-*d*) $\delta_{\rm C}$, м.д. 87.08, 72.76, 66.46, 66.41, 52.29, 43.20, 43.12, 39.90, 39.85, 25.44, 23.29. Спектр ЯМР ³¹Р (CHCl₃-*d*) $\delta_{\rm P}$ 6.50 м.д. Вычислено, %: С 43.90; Н 6.09; N 4.26; Р 9.45. С₁₂H₂₀NO₃PCl₂. Найдено, %: С 43.87; Н 6.59; N 4.59; Р 9.75.

Ренгеноструктурный анализ диметил-N-(1-этинилциклогексан-1-ил) амидофосфата (10) и ди(β-хлорэтил)-N-(1-этинилциклогексан-1-ил) амидофосфата (14)

Рентгеноструктурный анализ соединений 10, 14 выполнен в лаборатории дифракционных методов исследования ИОФХ им. А.Е. Арбузова КазНЦ РАН.

Рисунок 8 – Диметил-N-(1-этинилциклогексан-1-ил)амидофосфат (10)

Кристалографические данные: кристаллы соединения (10) (С₁₀Н₁₈NO₃P, M = 231.22) триклинные (рис.2.8). При 108 К получены следующие параметры ячейки: a = 6.6243(2), b=8.9504(3), c = 11.0618(4)Å, $\alpha = 108.282(1), \beta = 100.365(1), \gamma = 102.885(1)^{\circ}, V = 584.53(3)$ Å³, Z = 2, пространственная группа *P*-1, $d_{\rm выч} = 1.314$ г·см⁻³, $\mu = 0.224$ мм⁻¹, F(000) = 248. Данные получены на автоматическом дифрактометре BrukerD8 QUEST с детектором PHOTONIICCD [графитовый монохроматор, λ (МоК α) = 0.71073 Å, ω -сканирование], $2\theta < 60^{\circ}, R_{\rm int} = 0.032$. Было измерено 15873 отражений, из них 3411 независимых, число наблюдаемых отражений с $I > 2\sigma(I)$ равно 3267, окончательные значения факторов расходимости *R* 0.0423, $_{\rm W}R_2$ 0.1133, GOF = 1.29, число определяемых параметров 142.

Рисунок 9 – Ди(β-хлорэтил)-N-(1-этинилциклогексан-1-ил) амидофосфата (14)

Кристалографические данные: кристаллы соединения (14) (C₁₂H₂₀Cl₂NO₃P, M = 328.16) моноклинные (рис. 2.9). При 108 К получены следующие параметры ячейки: a = 7.7198(4), b=21.6218(12), c = 9.7966(5)Å, $\beta = 111.054(2)^{\circ}$, V = 1526.05(14)Å³, Z = 4, пространственная группа $P2_1/n$, $d_{\rm BbIY} = 1.428 \ {\rm F} \cdot {\rm CM}^{-3}$, $\mu = 0.533 \ {\rm MM}^{-1}$, F(000) = 688. Данные получены на автоматическом дифрактометре BrukerD8 QUEST с детектором PHOTONIICCD [графитовый монохроматор, λ (MoK_{α}) = 0.71073 Å, ω -сканирование], $2\theta < 57.4^{\circ}$, $R_{\rm int} = 0.056$. Было измерено 31079 отражений, из них 3965 независимых, число наблюдаемых отражений с $I > 2\sigma(I)$ равно 3602, окончательные значения факторов расходимости R 0.0307, w R_2 0.0786, GOF = 1.08, число определяемых параметров 176 (Таблица 6).

Кристаллографические данные структур (10) и (14) депонированы в Кембриджской базе кристаллоструктурных данных (http://www.ccdc.cam.ac.uk). Номер депозита CCDC 2259640 и 2259641.

Параметр	10	14	
Эмпирическая формула	C10H18NO3P	C12H20Cl2NO3P	
Формульный вес	231.22	328.16	
Излучение, длина волны, Å	$MoK_{\alpha}, \lambda = 0.71073$		
Пространственная группа	P-1	$P2_1/n$	
<i>a,b,c,</i> Å	6.6243(2), 8.9504(3),	7.7198(4), 21.6218(12),	
	11.0618(4)	9.7966(5)	
α, β, γ, град.	108.282(1), 100.365(1),	111.054(2)	
	102.885(1)		
Объем, Å ³	584.53(3)	1526.05(14)	
Ζ	2	4	
$d_{gbly}, r/cm^3$	1.314	1.428	
Коэффициент поглощения, мм-1	0.224	0.533	
Область съемки, θ , град.	20<60	20<57.4	
<i>І_{hkl}измер. / І_{hkl} независ.</i>	15873 / 3411	31079 / 3965	
GOF	1.29	1.08	
R	0.0423	0.0307	
wR ₂	0.1133	0.0786	
Число уточняемых параметров	142	176	
Число наблюдаемых отражений	3267	3602	

Таблица 6 – Кристаллографические данные и параметры рентгеноструктурного эксперимента

Исследование и разработка методов синтеза новых амидофосфатов на основе ароматических аминов и диалкилфосфористых кислот в условиях реакции Тодда-Атертона с использованием межфазного катализатора – тетрабутиламмоний бромида

В ИК- спектрах амидофосфатов (15-18) имеются полосы поглощения в области 1222-1284 см⁻¹ характерные для Р=О группы, в интервале 938-1028 см⁻¹ наблюдаются интенсивные дублетные полосы поглощения Р–О–С – связи. Вторичной аминогруппе соответствуют полосы поглощения в области 3164-3208 см⁻¹ соответственно (таб.7).

В спектрах ЯМР ¹Н соединений (15-18) сигналы протона амидной группы проявляются в виде мультиплета в области 3.41 и 6.73 м.д. (табл.7).

Сигналы протонов диалкоксифосфорильных групп для (15) проявляются в виде дуплета в области 3.82-3.79 м.д. (д, J=11.3 Гц, 6H); для (16) – в виде триплета 1.35-1.31 м.д. (т, 6H) и в виде мультиплета в области 4.23-4.06 м.д. (м, 4H); для (17) – в области 3.68-3.66 м.д. (д, 6H); для (18) – в области 4.03-3.90 м.д. (м, 4H) и в виде триплета в области 1.24-1.16 м.д. (т, 6H). Сигналы протонов ароматического фрагмента для соединений (15-18) резонируют в виде мультиплетов в области 6.95-7.35 м.д. (м, 5H).

В спектрах ЯМР ¹³С сигналы углеродов ароматического фрагмента и диалкоксифосфорильных групп соединений (15-18) приведены в таблице 7.

В спектрах ЯМР ³¹Р продуктов реакции (15-18) имеются синглетные сигналы в области 2.57 – 11.29 м.д., что соответствует резонансу ядра фосфора в диалкиламидофосфатах.

N⁰	ИК спектр, v, ст ⁻¹									
		NH		Ph		(P=	0)	(P-O-C)		
15	,	3164		1597		121	6	1028-964		
16	,	3207		1600		121	5	1018-938		
17	,	3208		1452		122	23	1016		
18	,	3219		1448	1025-953					
	ЯМР ³¹ Р, δ, м.д.									
15	15 7.29-7.24 (2H, м, ArH), 7.05-7.04 (2H, д, ArH), 6.97-6.95 (1H, т, ArH), 5.35 6.73-6.71 (1H, д, NH), 4.23-4.06 (4H, м, O <u>CH</u> ₂ CH ₃), 1.35-1.31 (6H, т, POCH ₂ <u>CH</u> ₃)									
16	7.29-7.24 6.73-6.7 POCH ₂ C	1H, т, ArH), -1.31 (6H, т,	2.57							
17	7.35-7.24 3.53-3.44	4 (5Н, м, . 4 (1Н, NF	ArH), 4.09- H), 1.30-1.2	4.06 (2H, 7 (3H, т,	м, CH ₂), 2 РО <u>СН</u> 3)	3.68-3.66 (6)	Н, д, ОСН ₃),	11.29		
18	7.30-7.20	0 (5Н, м, 6 (6Н, т, 1	, ArH), 4.0 POCH2 <u>CH</u> 3	3-3.90 (6	Н, м, СН	2), 3.53-3.4	4 (1H, NH),	8.83		
				ЯМ	P ¹³ C, δ, м	і.д.				
	C1	C_2	C ₃	C_4	C5	C ₆	C ₇	P(OR) ₂		
15	139.42	118.67	115.20	129.29	117.33	121.85	-	53.23		
16	139.88	117.35	116.67	129.22	117.29	121.45	-	16.10; 62.76		
17	139.62	127.62	126.95	128.80	127.53	128.71	45.11	18.39		
18	139.85	128.29	127.15	128.93	127.32	128.62	45.16	16.11; 62.18		

Таблица 7 – Спектральные характеристики амидофосфатов (15-18).

Диметил фенилфосфорамидат (15): ИК спектр v, см⁻¹: 3164, 1597, 1216, 1028, 964. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 7.29-7.24 (2H, м, ArH), 7.05-7.04 (2H, д, ArH), 6.97-6.95 (1H, т, ArH), 6.73-6.71 (1H, д, NH), 4.23-4.06 (4H, м, O<u>CH₂CH₃</u>), 1.35-1.31 (6H, т, POCH₂<u>CH₃</u>). Спектр ¹³С (CDCl₃): 139.42, 118.67,115.20, 129.29, 117.33, 121.85, 53.23. Спектр ³¹Р (CDCl₃): δр 5.35 м.д.

Диэтил фенилфосфорамидат (16): ИК спектр v, см⁻¹: 3207, 1600, 1215, 1018, 938. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 7.29-7.24 (2H, м, ArH), 7.05-7.04 (2H, д, ArH), 6.97-6.95 (1H, т, ArH), 6.73-6.71 (1H, д, NH), 4.23-4.06 (4H, м, O<u>CH₂CH₃), 1.35-1.31 (6H, т, POCH₂CH₃).</u> Спектр ¹³С (CDCl₃): 139.88, 129.22, 121.45, 117.35, 62.76, 16.10. Спектр ³¹Р (CDCl₃): δр 2.57 м.д.

Диметил бензилфосфорамидат (17): ИК спектр v, см⁻¹: 3208, 1452, 1223, 1016. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 7.35-7.24 (5H, м, ArH), 4.09-4.06 (2H, м, CH₂), 3.68-3.66 (6H, д, OCH₃), 3.53-3.44 (1H, NH), 1.30-1.27 (3H, т, PO<u>CH₃</u>). Спектр ¹³С (CDCl₃): 139.62, 128.80, 128.71, 127.62, 127.53, 126.95, 45.11, 18.39. Спектр ³¹Р (CDCl₃): δр 11.29 м.д.

Диэтил бензилфосфорамидат (18): ИК спектр v, см⁻¹: 3219, 1448, 1222, 1025, 953. Спектр ЯМР ¹Н (CDCl₃), δ, м.д.: 7.30-7.20 (5H, м, ArH), 4.03-3.90 (6H, м, CH₂), 3.53-3.44 (1H, NH), 1.24-1.16 (6H, т, POCH₂<u>CH₃</u>). Спектр ¹³С (CDCl₃): 139.85, 128.93, 128.62, 128.29, 127.32, 127.15, 62.18, 45.16, 16.11. Спектр ³¹Р (CDCl₃): бр 8.83 м.д.

2.2. Лабораторные испытания на ростстимулирующую активность препаратов нового поколения на зерновых культурных растениях

Изучение влияния препаратов на всхожесть и энергию прорастания семян, а также на фунгицидную активность семян пшеницы и ячменя.

Методология: В лабораторных условиях проводились исследования по изучению влияния препаратов №4 (N-(3-фенилпроп-2-ин-1-ил)-N-бутиламинодитиокарбамата калия); №5 (N-(3-фенилпроп-2-ин-1-ил)-N-фениламинодитиокарбамата калия); №6 (N-(3-фенилпроп-2-ин-1-ил)-N-бензиламинодитиокарбамата калия): №7 (N-(3-фенилпроп-2ин-1-ил)-N-бутиламинодитиокарбамата натрия); №8 (N-(3-фенилпроп-2-ин-1-ил)-Nфениламинодитиокарбамата натрия); <u>№</u>9 (N-(3-фенилпроп-2-ин-1-ил)-Nбензиламинодитиокарбамата натрия); Акку-1-М (диэтил-N-(1-этинилциклогексан-1-ил) амидофосфат); Акку-П-2 (тетраметил 1,3-фениленбис(фосфорамидат); Акку-№20 1,3-фениленбис(фосфорамидат); Акку-36 (диметил(1-гидрокси-1-(тетраэтил фенилэтил)фосфанат) на посевные качества и на грибную и бактериальную микрофлору семян пшеницы и ячменя.

Обработку проводили путем увлажнения семян в растворах препаратов при различных концентрациях (0,01; 0,001 и 0,0001%), в контроле семена увлажняли водой.

Влияние препаратов при разных дозах на посевные качества семян проверяли во влажных камерах. В каждом варианте брали по 50 семян в 3-х кратной повторности. Энергия прорастания проверялись на 3 сутки, лабораторная всхожесть 5 и 7 сутки по количеству проросших семян. Влияние препаратов на бактериальную и грибную микрофлору устанавливали на питательной среде – картофельно-глюкозном агаре (КГА), согласно методическим указаниям Н.А. Наумовой «Анализ семян на грибную и бактериальную инфекцию».

Результаты опытов по оценке влияния препаратов на посевные качества семян пшеницы и ячменя во влажных камерах представлены в таблицах 8-9.

N⁰	Bap	иант	Энергия	Лабораторна	Интенсивност	Интен	сивность	Количеств
п/п	опыта	а, доза	прорастания,	я всхожесть,	ь роста	р	оста	о больных
•			%	%	проростков,	микрос	организмо	семян и
					%		B	проростко
						гриб	бактери	в, %
1	No.4	0.01	05.2	06.6		ы	И	28.0
1	л⁰4 калий	0,01	95,3	96,6	+++	+	+	38,0
		0,001	96,6	99,2	+++	+++	++	68,6
		0,000 1	99,3	99,3	++	+++	+++	88,0
2	N₂5	0,01	94,0	92,0	+	+	++	24,0
	калий	0,001	93,3	97,3	+++	+++	+	72,0
		0,000	96,0	98,0	+++	+++	+++	100,0
3	№6 	0,01	96,0	97,3	+++	+	++	41,3
	калий	0,001	94,6	96,0	+++	++	+++	62,6
		0,000	99,3	99,3	+++	+++	+++	88,6
4	№ 7	0,01	98,0	98,0	++	+	+	34,6
	натри	0,001	96,6	97,3	+++	++	++	82,0
	И	0,000 1	96,6	97,3	+++	+++	+++	96,6
5	N <u>⁰</u> 8	0,01	99,3	99,3	+++	++	++	30,0
	натри	0,001	97,3	98,6	+++	+	+++	54,0
	И	0,000	96,3	96,0	++	+++	+++	100,0
6	<u>№</u> 9	0,01	96,0	97,3	+++	++	+	30,0
	натри	0,001	94,0	96,6	++	++	+	87,3
	И	0,000	94,6	94,6	++	+++	+++	76,0
7	Акку -	0,01	96,6	96,6	+++	+	++	30,0
	1-M	0,001	94,6	94,6	+++	+++	+	60,0
		0,000	98,6	98,6	++	+++	+++	93,3
8	Акку-	0,01	94,6	96,0	++	+	++	34,6
	П-2	0,001	98,0	99,3	++	+++	+++	86,0
		0,000	98,0	98,6	+++	+++	+++	65,3
9	Акку-	0,01	98,0	98,0	+++	++	+++	29,0
	№20	0,001	96,0	98,6	+++	+	+++	78,0
		0,000	95,3	96,0	+++	++	+	33,3
10	Акку-	0,01	96,6	95,3	++	+	+++	33,2
	36	0,001	94,0	98,0	++	++	+++	88,0
		0,000	99,3	99,3	++	+	+	28,0
11	Эталон с.п. 5,5	- Ресид кг/т	93,2	94,0	++	+	++	76,6
12	2 Контроль, б/о		93,3	96,0	++	+++	+++	95,3

Таблица 8 – Влияние препаратов на посевные качества и микрофлору семян пшеницы

Результаты опыта показали, что препараты при обработке семян пшеницы положительно повлияли на посевные качества семян. Стимулирование посевных качеств

и рост проростков наблюдается в вариантах №4 при концентрациях (0,001, 0,0001%) №5 (0,0001%), №6 (0,0001%), №8 (0,001%), Акку 1-М (0,001%), и Акку -36 (0,001%), где всхожесть составляет от 98,0–99,3, одна ко они не подавляют грибную и бактериальную микрофлору, количество больных семян составляет 54,0–100% соответственно.

Только вариантах №4 калий, №7 натрий, №8 натрий, Акку 1-М при концентрации 0,01% и Акку 36 – при концентрации 0,0001%, наблюдалось существенное подавление грибной и бактериальной микрофлоры, количество проросших семян было выше контроля и эталона на 28,0-38% (рисунки 10, 11). В остальных вариантах отмечено сильное заселение сапрофитными грибами рода *Мисог*, вызывающий плесневение семян и бактериальной микрофлорой.

контроль

Акку 1-М – 0,01%

№4 калий – 0,01%

№6 калий - 0,01%

Рисунок 10 – Интенсивность роста корневой системы пшеницы (влажная камера, 7 день)

Акку 36 – 0,0001%

Акку 1-М – 0,01%

№6 калий – 0,01%

Рисунок 11 – Рост микрофлоры на семенах пшеницы, обработанные препаратами (питательная среда)

			1
Таблица 9 – Влияние п	пепаратов на посен	аные качества и мики	офпору семян ячменя
ruomių / Dimmine n	penaparob na nover	mble Ruiteerbu ni minkp	

№ п/п	Вариант опыта		Энергия прорастания, %	Лабораторн ая всхожесть, %	Интенсивнос ть роста проростков	Интен р микро гриб ы	сивность оста организм ов бактери и	Интенсивность роста микроорганизм ов
1	Nº4	0,01	81,3	89,3	++	+	++	12
	калий	0,001	85,3	88,6	+++	+	+++	14
		0,000 1	85,3	88	+++	++	+++	26
2	N <u>⁰</u> 5	0,01	81,3	89,3	++	+	+++	28
	калий	0,001	83,3	84,6	++	++	++	21,3
		0,000 1	83,5	93,3	+++	+	+++	24
3	№6	0,01	80,6	89,3	++	+	+++	22,6
	калий	0,001	80	87,3	+++	++	+++	37,3
		0,000	88	95,3	++	++	+++	25,3
4	Mo7	1	82	87.3				12.2
-	л⊻/ натри	0,01	80	83.3	+++			38
	й	0,001	92	97.4	+++			29.3
		1	72	<i>)</i> 7,4		1.4	1 1 1 1	27,5
5	N <u>⁰</u> 8	0,01	79,3	88,6	++	+	+	20
	натри	0,001	80	85,3	+++	+	+++	36
	й	0,000	82,7	88	+++	+	++	23,4
		1						

продолжение таблицы 9

6	N <u>⁰</u> 9	0,01	77,3	92	+++	+	-	20
	натри	0,001	86	84,6	+++	++	++	20,6
	й	0,000	78	89,3	+++	+	+++	32
		1						
7	Акку	0,01	81,3	87,3	++	+	-	17,3
	-1-M	0,001	82	85,3	+++	++	++	36,6
		0,000	89,2	90	+++	+	++	28
		1						
8	Акку	0,01	78,6	84,0	+++	+	-	20
	-П-2	0,001	79,3	86	+++	++	++	45,3
		0,000	85,2	88,6	++	++	++	20
		1						
9	Акку-	0,01	82,6	90,6	++	++	+	18,6
	№20	0,001	87,3	88,6	+++	++	++	35,3
		0,000	84	88,6	++	++	++	16
		1						
10	Акку-	0,01	81,3	88,6	++	+	-	19,3
	36	0,001	87,3	90,6	+++	+	+++	34,6
		0,000	80,6	86	++	+	++	17,3
		1						
11	11 Эталон Ресид с.п. 5,5 кг/т		71,3	80,0	++	+	++	27,3
12	Контроль		74,6	83,3	+	+++	+++	36,6

Результаты опыта показали, что обработка семян ячменя препаратами также оказывает положительное влияние на их посевные качества, энергия прорастания и лабораторная всхожесть были выше контроля на 0,3-13,7%. Также во всех обработанных вариантах отмечалось подавление интенсивности роста грибной микрофлоры по сравнению с контролем, подавление бактериальной микрофлоры было отмечено при концентрации 0,01% в вариантах №7 натрий, №9 натрий, Акку–П-2 и Акку-36. Количество больных семян снижено в вариантах №4, №6, №7, №9, Акку 1М, Акку-П-2, Акку-36 при концентрации 0,01% (рисунок 12, 13).

Нами в лабораторных условиях по общепринятым в фитопатологии и микологии методам на яровой пшенице и ячмене было проведено испытание биопрепаратов №4 (N-(3-фенилпроп-2-ин-1-ил)-N-бутиламинодитиокарбамата калия); №5 (N-(3-фенилпроп-2ин-1-ил)-N-фениламинодитиокарбамата калия); №6 (N-(3-фенилпроп-2-ин-1-ил)-Nбензиламинодитиокарбамата калия): **№**7 (N-(3-фенилпроп-2-ин-1-ил)-Nбутиламинодитиокарбамата <u>№</u>8 (N-(3-фенилпроп-2-ин-1-ил)-Nнатрия); фениламинодитиокарбамата натрия); <u>№</u>9 (N-(3-фенилпроп-2-ин-1-ил)-Nбензиламинодитиокарбамата натрия); Акку-1-М; Акку-П-2; Акку-№20; Акку-36 на посевные качества и на грибную и бактериальную микрофлору семян пшеницы (сорт Казахстанская 10) и ячменя (сорт Арна) при различных концентрациях (0,01; 0,001 и 0,0001 %), за эталон был взят препарат Ресид с.п. с нормой расхода 5,5 кг/т, в контроле семена увлажняли водой.

Отмечено, что препараты при обработке семян пшеницы положительно повлияли на посевные качества семян пшеницы м ячменя. Наилучшая эффективность на семенах пшеницы была в вариантах №4, №6, №7 при концентрации 0,01 %, Акку 1-М, Акку П-2 и Акку -36 при концентрации 0,0001 %. В вариантах №4 калий, №6 калий, №7 натрий, Акку 1-М при концентрации 0,01 % и Акку 36 – при концентрации 0,0001 %, наблюдалось существенное подавление грибной и бактериальной микрофлоры, количество проросших семян пшеницы было выше контроля и эталона. В остальных вариантах отмечено сильное заселение сапрофитными грибами рода *Мисог*, вызывающий плесневение семян и бактериальной микрофлорой.

Контроль

№7 натрий

Акку-П-2-0,01%

Акку-36 – 0,01%

№7 натрий 0,01%

Эталон

Акку -1-М - 0,01%

Акку-П-20-0,01%

Рисунок 13-Рост микрофлоры на семенах пшеницы, обработанная препаратами, питательная среда

Обработка семян ячменя препаратами также оказала положительное влияние на их посевные качества. Во всех вариантах опытов энергия прорастания и лабораторная всхожесть были выше контроля. Количество больных семян снижено в вариантах №4 калий, №7 натрий, Акку 1-М, Акку-П-2, Акку-36 при концентрации 0,01 %.

Таким образом, все испытуемые препараты в лабораторных условиях повышали посевные качества семян зерновых культур, подавляли инфицированность семян в той или иной степени. Отмеченные выше препараты в рекомендуемых концентрациях подлежат к исследованию в полевых условиях.